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Abstract: - The paper is devoted to the development and analysis of the mathematical model for mixing 

and heat transfer in the two-fluid turbulent heterogeneous jet of mutually immiscible liquids. Many natural and 

technical processes deal with the turbulent jets of mutually immiscible liquids, which represent an important 

class of the modern multiphase system dynamics. Differential equations for the axially symmetrical two-

dimensional stationary flow and the integral correlations in a cylindrical coordinate system are considered for 

the jet of fluid flowing from a nozzle into a pool of another fluid immiscible with the first one. The results may 

be of interest for researchers and engineers in the multiphase turbulent jets, mixing and heat transfer processes. 
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1 Introduction 
The field of turbulent heterogeneous jet flows is 

now huge. Every month new papers are published. 

The problem of mathematical modelling and 

simulation, as well as development of the new 

experimental techniques is requested by control of 

turbulent jet flows in a number of diverse 

technological and technical processes and devices. It 

has applications in various fields: combustion, 

aerodynamic noise, propulsion, chemical industry 

and metallurgy, and many others [1-20].  

Control of the mixing intensity of components in 

the jet flows is performed using the parametric 

actions, instability processes, etc., e.g. the turbulent 

mixing of the chemical species in combustors is 

done not only for enhancing the combustion 

efficiency, but also for the reduction of the 

pollutants’ emission. The parametric excitation and 

suppression of the oscillations in a turbulent jet can 

be significantly altered by applying a suitable 

excitation at the jet orifice or volumetrically 

(distributed in space is especially effective) in case 

of the electroconductive liquid [1]. The external 

forces interact with the Eigen modes of the 

oscillations in a jet, mostly in nonlinear way. Also it 

is available interaction of the modes, and in some 

cases it is not possible to optimize the process or to 

increase mixing acting in the resonance modes [1].  

Many investigations have been devoted to the 

gas dynamics of two-phase media, transport features 

in compressible heterogeneous turbulent jets, 

peculiarities of high-speed gas–liquid flows, 

interaction of the phases in multicomponent 

multiphase jets including accounting the thermal 

effects, flows with droplets and particles [3-12]. 

The theoretical and experimental methods were 

developed to study the structure of turbulent jets, the 

stability and mixing properties under diverse 

conditions in the free and confined jet flows, and 

many other phenomena [13-20]. Not many papers 

were done concerning the two-phase flows of 

immiscible fluids like the water and oil [20], which 

represent specific case of two-phase flows with both 

deformable liquid phases. 

This was a kea point in development of the jet 

steel making machine proposed by Prof. A.I. 

Nakorchevskii [21], therefore he developed that 

method and we were the first performing modelling 

and computer simulation [22-24]. A number of 

papers by turbulent heterogeneous jets including the 

ones mentioned in this paper do not cover this 

aspect. There are no analogues of the Prof. A.I. 

Nakorchevskii method [22] by the turbulent 

heterogeneous jets, where the critical point is to 

study the detail phase distribution in case of close 

density ration (e.g. water and oil, metal melt and 

slag, etc.). Therefore, this paper has a goal to 

present the results by modelling and computer 

simulation of the heterogeneous turbulent jets of 

immiscible liquids with underlining the pros and 

cons in application of the method, which might be 

interesting for the other fields of study. 
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2 Statement for Modelling of 

Multiphase Turbulent Flows 
 

 

2.1 The Method for the Heterogeneous 

Turbulent Flows 
According to the method by Nakorchevskii [22], all 

parameters ( )la t  (density of liquid, flow velocity, 

temperature, etc.) of a mixture in the turbulent 

multiphase flow are considered as follows: 

1

( ) ( ) ( )
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i i
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The function-indicator ( )iB t  was introduced for 

the phases in multiphase flow by the next rule: 

1, phase occupies elementary volume V;  
( )

0, phase outside elementary  volume V.
i

i
B t

i
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Thus, at each point of the flow there are considered 

parameters of a flow plus indication of the phase at 

this point. At each moment of time ( )iB t  is 1 or 0 

for each phase because only one phase can be at the 

point at the moment of time.  

If the function-indicator ( )iB t  is averaged by 

time, it has values from 1 to 0, and the sum of all 

function-indicators for all phases of a flow is totally 

1 (all the time at each point there is present some 

phase, and only one at the moment). This method 

was elaborated and applied successfully to solution 

of a number of different problems [22-28]. The 

analog of the Navier-Stokes equations in a boundary 

layer approach was derived in the form [22]: 
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where the stationary equations (1) for the flow of 

incompressible liquids are written in a cylindrical 

coordinate system. Here are: p- pressure, ρ- density, 

u,v- the longitudinal and transversal velocity 

components by x and y, respectively, i - i-phase 

turbulent stress.  

All parameters of the flow are averaged on the 

characteristic time interval chosen. Index m belongs 

to the values at the axis of the flow (symmetry axis). 

The function-indicator of a phase in multiphase flow 

may be considered as the mathematical expectation, 

in contrast to the other multiphase approaches [29, 

30], which are based on the introduction of the 

volumetric specific content of a phase in multiphase 

flow. Nevertheless, use of the function-indicator 

allows computing the volumetric specific content of 

the phases, which have been introduced by another 

multiphase approaches. 

 

 

2.2 Statement for the Model Development 
Development of the model for two-phase jet of 

immiscible liquids is done according to the Fig. 1 

and schematic representation in Fig. 2, where r0 – 

radius of a nozzle, u01- velocity at the nozzle.  

The conical surface 1 in Fig. 1 is a boundary of a 

homogeneous potential core a, the internal sublayer 

b1 contains an ejected liquid as a disperse phase, 

while the external sublayer b2 contains the liquid 

outgoing from the nozzle as a disperse phase. The 

internal and external sublayers are divided by the 

surface of phase inverse 2; and the surface 3 is 

dividing the turbulent and laminar flow zones 3, 

which is the most indefinite one; 4 is an external 

conical surface of the axisymmetrical mixing zone 

(conditionally smooth).  

 
Fig. 1 General view of the multiphase turbulent jet 

in the pool of other immiscible liquid [22] 

 

Fig. 2 Schematic representation [22] for multiphase 

turbulent jet confined by channel at the distance xg 

Due to a limited regularity of the processes 

occurring in turbulent jets, the surfaces 2 and 3 in 
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Fig. 1 are blurred into the corresponding regions of 

inversion and intermittency. The external boundary 

of the jet is the outer envelope surface 4 of the set of 

surfaces 3. The uniform velocity profile is assumed 

for the first liquid going from the nozzle. The 

surrounding liquid (phase 2) is in the rest before the 

first liquid starts flowing from the nozzle.  

The structural scheme for the mixing process in 

Fig. 2 is simplified: the initial part of the length xi 

with the approximately linear boundaries for the 

conical surface (in cylindrical coordinate system) of 

the internal core of a first phase and mixing zone 

between internal and external boundaries of the jet. 

The turbulent zone contains fragments of the phases 

as far as immiscible liquids have behaviors like the 

separate phases, with their interfacial multiple 

surfaces. The first phase in a potential core is totally 

spent in an initial part of the mixing zone. Then a 

short transit area follows. Afterwards the ground 

part of the two-phase jet begins, with the two phases 

well mixed across the entire layer of a jet. 

Except for the parameters of phases, the 

function-indicator of i-phase ( )iB t  shows an 

influence of i-th phase at each point of a space. 

Normally the spatial averaging of the conservation 

equations of mass, momentum and energy is 

performed for a description of multiphase flows 

based on the concept of volumetric phase content 

[29, 30], which does not fit to the experimental 

study of a movement of the separate phases in a 

mixture. In a contrast, an approach [22] with its 

special experimental technology and a micro sensor 

for the measurements in two-phase flows fits well 

for such flows. Actually all known methods of 

multiphase flows are connected and the parameters 

averaged by time [22] can be transformed to the 

ones averaged by space [29, 30].  

The external boundary of a mixing zone is 

determined by zero longitudinal velocity of the 

second phase and zero transversal velocity of the 

first phase (the second phase is sucked from an 

immovable surrounding liquid into a mixing zone). 

The function-indicator of the first phase B1(t) is zero 

at the external interface because it is absent in the 

surrounding medium. Similar, the function-indicator 

B2(t) is zero on the boundary of the potential core, 

the interface of the first phase flowing from the 

nozzle. In a first approach, an influence of the mass, 

viscous and capillary forces is neglected.  

With account of the above-mentioned, the 

boundary conditions are [22]: 

     y=y0,  ui= u0i,  vi=0,  τi=0,  B1=1, 
1 / 0B    ;        

     y=y0+δ,  ui= 0,  vi=0,  τi=0, B1=0.             (2) 

And dependence of the function-indicator B1 from 

the longitudinal coordinate x is introduced through 

the second derivative of it at the boundary of a jet:  

y=y0,  
2 2

1 / ( )B h x   . 

 

3 Approximations of the Velocity 

Profiles and Function-Indicator 
The turbulent stress in the phase is stated by the 

“new” Prandtl’s formula  τi=ρi κiδumi /iu y  , where 

κi is the coefficient of turbulent mixing for the i-th 

phase, δ is the width of the mixing layer.  

 

 

3.1 Approximations at Initial Part of the Jet  
The polynomial approximations for the velocity 

profiles and other functions have been obtained 

based on the boundary conditions (2) [22, 23]. The 

velocity profiles for the first and second phases are: 

         3 4

1 01/ 1 4 3 ,u u                          (3) 

     2 3 4

2 02/ 1 6 8 3u u       .               (4)    

 

 

3.2 Approximation of the Function-indicator 
The approximation of the function-indicator was 

performed with account of the boundary conditions 

(2), (3): 

 (0) 3 2

1 1 1 0.5 (1 ) ( ), 6,0B B h x h         ;                                                                           

(1) 3 4 2 2

1 1 1 4 ( )3 0.5 (1 )B h xB          ,

 12, 6 ;h    

 (2) 3 4 5 2 3

1 1 10 15 6 0.5 (1 ) ( )B h x          ,     (5)  

 20, 12 ;h  
    

(3) 3 4 5 6 2 4

1 1 20 45 36 10 0.5 (1 ) ( )B h x            ,   

 30, 20 ;h  
    

        (4) 3 4 5 6 7

1 1 35 105 126 70 15B           

2 5
0.5 (1 ) ( ),h x  

 
 42, 30 ;h  

 
(5) 3 4 5 6 7

1 1 56 210 336 280 120B           

 8 2 6
21 0.5 (1 ) ( ), 56, 42 ;h x h       

 
(6) 3 4 5 6 7

1 1 84 378 756 840 540B           

 8 9 2 7
189 28 0.5 (1 ) ( ), 72, 56 .h x h         

 

Here the function h(x)=  2 2

1 0
/B





   describes the 

variation of B1 by x, it may vary in the range 0h   

due to requirements of its physical meaning. The 

first approximation 1( )B   in the set (5) reveals 
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restricted application in the range  6,0h  , while 

outside of this region it does not satisfy the 

boundary conditions (2) and the condition 

10 ( ) 1B   ,  0,1  . Therefore, all the next 

approximations 1( )B   in (5) were obtained as 

transition of the piecewise continuous function-

indicator 
( )

1

n
B  to its next approximation under 

request that the derivative by   with respect to a 

point 1   is zero up to (n+1)-th order. These 

functions have the breaks at the transition points of 

the permanent characteristic function 𝐵1
(𝑛)

(𝜂, ℎ) 

from the one regional approximation to the other 

one (the first derivative has a break at those points).  

The advantage of such approximations is that all 

functions 
( )

1

n
B  are smoothly transforming from one 

region by h(x) to the next one as shown in Fig. 3. 

Each function 
( )

1

n
B  exactly coincides with the 

previous one 
( 1)

1

n
B


 at the conjugation boundary, 

where the 
( 1)

1

n
B


 ends while the next, 

( )

1

n
B  starts.  

Physical meaning of the varying approximations 
( )

1

n
B  is determined by dependence of the phase 

distribution in the mixing layer on the density ratio 

of mixing phases: the higher is density of the 

surrounding liquid, the shorter is penetration of the 

first, lighter phase, into the mixing layer. 

The disadvantage of the above approximations is 

a growing complexity of the functions 
( )

1

n
B  in 

analytical calculation, which is nevertheless easily 

fought by the modern computer analytical 

calculations. It is impossible to get a common 

approximation for B1(𝜂, ℎ) satisfying the boundary 

conditions (2) in all range by parameter i0 (due to 

the requirement of variation B1 from 0 to 1).  

 

 

3.3 Approximations at Ground Part of Jet  
The polynomial approximations for u2, B1 remain 

the same on a ground part of the jet but for the 

function u1 the approximation is  

            2 3

1 1/ 1 3 2mu u     .                (6)    

         

                                       

3.4 Calculation of the Profiles 
All polynomial approximations (3)-(6) are shown in 

the Figs 3, 4: 

 
Fig. 3 Velocity profiles across the layer (from top to 

bottom): 1-
1 01/u u , 2-

1 1/ mu u , 3-
2 02/u u  

 

The real profiles for the multiphase flow are 

represented as a product of the corresponding 

profile multiplied by its function-indicator. The ones 

are presented in Figs 5, 6 for the few regions by the 

function h(x). 

 
Fig. 4 Approximations of the profiles of function-

indicator 
( )

1

n
B  across the layer 

 
Fig. 5 Real velocity profiles of first and second 

phase for h(x): 0, -6, -12, -20 at the initial part of jet,  

10-13: 
1 1 01/B u u ,  20-23: 

2 2 02/B u u  

B1
(0) B1
(0) 

B1
(3) 

B1
(1) 

B1
(2) 
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4 Integral Correlations for the Initial 

and Ground Parts of the Jet 
Based on the above approximations of the profiles 

(3)-(5), the integral correlations have been derived 

for the two-phase turbulent jet [22, 23]. 

 

 

4.1 The Initial Part of the Jet 
Integration of the mass and momentum conservation 

equations (1) with the boundary conditions (2) for 

the total cross-section of a flow y=y0+δ, as well as 

the momentum conservation equation for the part 

y=y* of the jet, respectively, yields the equation 

array (7).  

 
Fig. 6 The real velocity profiles of the first phase at 

the ground part of jet for h(x): 0, -6, -12, -20; 

 0-3: 
1 1 1/ mB u u  

   
1

2 2

01 0 0 1 1 0
0

2u r y B u y d     ,  

   
1

2 2 2 2 2

1 01 0 0 1 1 1 2 2 2
0

2u r y B u B u                     

         
 0 ,y d 

   
 * 0

1 01 01 1

dy
u u u

dx
  

   (7)                                                      

 
* 2

2

0
0 1

j j j

j

d
B u y d

dx



   


    

 
*2

*

0
01

i i i i

j

d
u B u y d

dx



   


 
 

 
*2

*

0 0

1

j

j j j j

j

u
y B u  







  ,   1 2 1B B  .                                    

The first equation (7) was got integrating the 

mass conservation equation by y, the second and the 

third ones – integrating the momentum conservation 

for the total flow of a two-phase mixture for y=y0+δ 

and y=y*, respectively. The parameters at η=η*<1 

are signed with a star *.  

 

 

4.2 The Ground Part of the Jet 
The integral correlations for the ground part of a jet 

are [22]: 

2

01 0
1 1

0 2
,

u r
B u ydy



  
2 22

2 01 0
1

01 2
j j j

j

u
B u dy

r
y



 


 ,                             

         

*2 2
2 * * *

01 1

y

j j j j j

j j

d
B u ydy B

dx
y 

 

            (8)

*2
*

01

,
y

j j j j

j

d
u B u ydy

dx




 
 

where the first is equation of mass conservation for 

the first phase, the second and the third – the 

momentum conservation equations for the total and 

for the part of the cross section, respectively, 

according to the methodology [31].  

The integral correlations for the ground part of a 

jet were obtained similarly to the initial part. The 

momentum equations for the total and for the part of 

the cross section, respectively, were got according 

to [31]. The momentum equation on the jet’s axis 

(y=0) is used too: 

         
2 2

1 1

2
mj

j mj mj j j

j j m

du
B u

dx y
B 

 





 
  

 
  .         (9) 

Mathematical model (7)-(9) including the 

ordinary differential equations by longitudinal 

coordinate x are used for analysis and numerical 

simulation of the basic features of the stationary 

turbulent two-phase jet of two immiscible liquids.  

The function-indicator B1 shows how much is a 

presence of the first phase in a selected point of 

mixing zone, which can be directly compared to an 

experimental data by two-phase sensor [22]. 

Therefore, a solution of the task may give both 

parameters of the flow together with their belonging 

to a particular phase. 

 

 

4.3 Transformation of the Mathematical 

Model to the Dimensionless Form 
The equation array (7) for the initial part of the jet is 

transformed to the following dimensionless form 

with the scales r0, δ, u0i for the longitudinal and 

transversal coordinates and velocity, respectively: 

 
2

2 2 1

0 0 2 0 2

1

2 1
j j

j j

j

y y a bi 
 

 



  ,  

0 

1 

2 
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2

2 2 1

0 0

1

2 1
j j

j

j

y y a 
 



  ,               (10)           

   
2

* 2 1 * * * *0
1 0 0 1 0 2

1

1 j j

j j

j

d d
u y u u

d d

y
y a i b 

 

 



   

 
2

2 1 * *

0 2 0 2

1

j j

j j

j

d
y

d
a i b 



 

 



 
 

   
*

2
1* *

0 0 21

1

jj

j

j

u
y B i













 
  

 
 . 

Here are the star marked values taken by *
  . 

Normally * 0.5   is adopted for this. The other 

assignments are as follows:  

0 0 0/y y r , 
0/ r  ,  0 /y y   , 

0/x x r , 

1x  , 
0 02 01/s u u , 

2

0 0i ns , 
1 2i i ib b b h  , 

2 1/n   , 
21 2 1/   , 

1 2i i ia a a h  ,     (11)                          

1
1

1 1
0

j

ia B u d 


  , 
1

1

2 2
0

j

i B u db  


   (i=1, 2); j=1,2

1
2 1

1 1
0

j

ia B u d 


  , 
1

2 1

2 2
0

j

i B u db  


   (i=3, 4).  

 

4.3.1 Calculation of Parameters in the Model 

The computed values of the integral parameters in 

(11) have been done in a range of variation of the 

function h(x) according to the approximation of the 

velocity profiles (3), (4) and the function-indicator 

of the phase B1 (5). As shown below mostly the 

region by parameter h(x) is covered in (5) for the 

bright enough density ratio of the mixing liquid 

phases. The coefficients 
ija , 

ijb  according to (11), 

(3)-(5) are presented in the Table 1 and Table 2: 

Table 1 – Integral parameters aij of the model for 

different regions of function-indicator B1 

aij for h 

interval: a11 a12 a21 a22 

0, -6 0.5464 0.0208 0.1667 0.0101 

-6, -12 0.4857 0.0107 0.1333 0.0046 

-12, -20 0.4310 0.0062 0.1065 0.0023 

-20, -30 0.3844 0.0038 0.0859 0.0013 

-30, -42 0.3455 0.0025 0.0703 0.00078 

-42, -56 0.3128 0.0017 0.0583 0.00049 

-56, -72 0.2853 0.0013 0.0490 0.00032 

aij for h 

interval: a31 a32 a41 a42 

0, -6 0.4604 0.0139 0.1198 0.0059 

-6, -12 0.4250 0.0080 0.1027 0.0030 

-12, -20 0.3884 0.0049 0.0866 0.0017 

-20, -30 0.3542 0.0032 0.0728 0.0010 

-30, -42 0.3237 0.0022 0.0614 0.00064 

-42, -56 0.2969 0.0016 0.0522 0.00042 

-56, -72 0.2734 0.0012 0.0447 0.00028 

Table 2 – Integral parameters bij of the model for  

different regions of the function-indicator B1 

bij for h 

interval: b11 b12 b21 b22 

0, -6 0.0179 -0.0101 0.0095 -0.0042 

-6, -12 0.0429 -0.0060 0.0214 -0.0022 

-12, -20 0.0690 -0.0038 0.0327 -0.0012 

-20, -30 0.0939 -0.0025 0.0424 -0.00076 

-30, -42 0.1167  -0.0018 0.0506 -0.00049 

-42, -56 0.1371 -0.0013 0.0573 -0.00032 

-56, -72 0.1552 -0.001 0.0629 -0.00022 

bij for h 

interval: b31 b32 b41 b42 

0, -6 0.0054 -0.0048 0.0023 -0.0016 

-6, -12 0.0149 -0.0032 0.0059 -0.00097 

-12, -20 0.0625 -0.0023 0.0098 -0.00062 

-20, -30 0.0390 -0.0016 0.0141 -0.00042 

-30, -42 0.0515 -0.0012 0.0180 -0.00029 

-42, -56 0.0637 -0.001 0.0215 -0.00021 

-56, -72 0.0752 -0.0007 0.0246 -0.00015 

 

The integral correlation for the part of the mixing 

layer in the system (10) was considered at 0.5   

according to the widely accepted methodology [31]. 

Corresponding coefficients 
*

ija ,
*

ijb  for the middle 

section of mixing layer are given in the Tables 3, 4: 

Table 3 – Integral parameters 
*

ija  of the model for 

different regions of the function-indicator B1 

*

ija for h 

interval: 
a11

* a12
* a21

* a22
* 

0, -6 0.444 0.011 0.1029 0.0038 

-6, -12 0.421 0.007 0.0941 0.0024 

-12, -20 0.392 0.006 0.0836 0.0015 

-20, -30 0.362 0.003 0.0730 0.00097 

-30, -42 0.333 0.002 0.0631 0.00064 

-42, -56 0.307 0.002 0.0548 0.00043 

-56, -72 0.281 0.001 0.0468 0.00030 
*

ija for h 

interval: 
a31

* a32
* a41

* a42
* 

0, -6 0.4103 0.0094 0.0902 0.0032 

-6, -12 0.3912 0.0062 0.0831 0.0020 

-12, -20 0.3673 0.0042 0.0745 0.0012 

-20, -30 0.3416 0.0029 0.0657 0.0008 

-30, -42 0.3164 0.0021 0.0574 0.0006 
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-42, -56 0.2936 0.0015 0.0503 0.0004 

-56, -72 0.2711 0.0011 0.0434 0.0003 

Table 4 – Integral parameters 
*

ijb  of the model for 

different regions of the function-indicator B1 

*

ijb  for h 

interval: 
b11

* b12
* b21

* b22
* 

0, -6 0.0075 -0.0142 0.0028 -0.0047 

-6, -12 0.0214 -0.0048 0.0079 -0.0015 

-12, -20 0.0392 -0.0033 0.0141 -0.0001 

-20, -30 0.0585 -0.0023 0.0206 -0.0006 

-30, -42 0.0777 -0.0017 0.0267 -0.0004 

-42, -56 0.0954 -0.0012 0.0320 -0.0003 

-56, -72 0.1130 -0.001 0.0372 -0.0002 
*

ijb  for h 

interval: 
b31

* b32
* b41

* b42
* 

0, -6 0.0039 -0.0085 0.0014 -0.0025 

-6, -12 0.0114 -0.0030 0.0039 -0.0008 

-12, -20 0.0214 -0.0022 0.0071 -0.0006 

-20, -30 0.0328 -0.0016 0.0106 -0.0004 

-30, -42 0.0446 -0.0012 0.0140 -0.0003 

-42, -56 0.0560 -0.0009 0.0172 -0.0002 

-56, -72 0.0675 -0.0007 0.0202 -

0.00015 

 

Using the above presented in the tables 1-4 integral 

parameters of the jet at its initial part, it is available 

to compute the characteristics of the jet. 

Except the above, we retain the same notations 

for the dimensionless parameters as for the 

dimensional ones. Only here in (11) it is stated for 

clarification of the dimensionless notations.  

 

4.3.2 Statement of the Boundary Conditions 

The sliding factor s0 is supposed to be constant. 

Boundary conditions (2) for (11) are transformed as  

   ζ=0,  y0=1,  δ=0;     ζ= ζi,  y0=0,  δ=δi;        (12) 

where ζi, δi are the dimensionless length of a jet and 

its maximal radius (at the end of the initial part).  

 

 

5 Models for the Initial and Ground 

Parts of a Jet 
 

 

5.1 Characteristics of the Initial Part of a Jet 
The characteristics y0(ζ), δ(ζ), h(ζ) are computed 

from numerical solution of the boundary problem 

(10), (12). Then all the others are got for the stated 

values of the main parameters: i0, κ1, κ2. The first 

parameter is slightly indefinite due to difficulties 

with estimation of the phases’ sliding, while the 

other two are known from the experimental studies 

for the specific conditions.  

The main problem with validation of the 

mathematical model against the experimental data is 

correct estimation of the coefficients of turbulent 

mixing κ1, κ2 in each specific case. But the 

advantage of the model is a possibility to have all 

characteristics of a flow together with their 

belonging to a particular phase through the 

functions B1, B2. Distribution of the transversal 

velocities, interface interactions, coefficients of the 

volumetric q and mass ejection g, and kinetic energy 

ei  for the phases in a flow are computed as [22]: 

 0 1 0 22q s b y b   ,   1 1
1 1 0

1 01

B v d
B u

u d
y 

 
  

 2 2

0 1 0 2

0

1
0.5 ,

d
y

y d
a y a 

 
  

   

 2 2
2 2 0

1 02

B v d
B u

u d
y 

 
     

 2

1 0 2

0

1
,

d

y d
b y b 

 
 

 

                 
1

2 3

1 0 1 1 0
0

2 B u de y y      ,      (13) 

  
1

3

2 0 0 2 2 0
0

2i s B u de y      , 

 
 2 21

21 0 1 0 2

0

1
0.5

u d
R y

y d
a y a 

   



 


   



  1
0 1 .

u
By 

 



 

 
   

                              
 

 

5.2 Equations and Boundary Conditions of 

the Ground Part of a Jet 
For the short transient part of the jet there is no 

developed substantiated scheme, therefore it is not 

under consideration here. The ground part is 

considered after a short transient part. The method is 

well elaborated and supported with the experimental 

data [22, 25, 28]. The dimensionless equation array 

(8), (9) for the ground part is the next 

   
2

2 1

1 1 1

1

2 1
j

m m j

j

B u h 




 ,   

    
2

2 1

1 1 2 0 2 0 20

1

2 1
j

m m j j

j

B u i h i   



  ,    (14)                 
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+ 

 

 
* *

2
* 2 * 1 2

1 0 21 1 0 21

1

1
j j

m m j

j

u u
u i B h i 

 
  



 


 
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     

    
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0

,tx x
x
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
  

0

,mi
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i

u
u

u
  ,i
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mi

u
u

u
  

2

0 0i ns ,  2
2

1

,
m

B
B

B
  

1
1 1 2

1

,
m

B
B h

B
     

21
1

1 1
0 1

i j

ij

j

B u d h   



  ,        

       
1

0
2 2 1 2

0 1

i i
i i

m

B u d h
B


        (i=1, 2).        (15)                 

The same as previously, we use these notations 

for the dimensionless values only here and keep 

previous assignments for the dimensionless 

parameters as for the dimension ones in all the other 

equations. Star * means a value by η=η*<1, xt  is the 

length of a transient part of a jet flow. It is assumed 

um2=s0um1 (s0=const), which means that sliding of 

the phases is preserved the same as for the initial 

part of a jet. The boundary conditions for the 

equation array (14) are  

 ζ=0,   um1=1,  Bm1=1,  δ= δt;      

               ζ= ∞,  um1=0,  Bm1=0,   δ=∞;           (16) 

δt is a radius of the jet at the transient cross section. 

Solution of the boundary problem (14), (16) yields 

the functions um1(ζ), Bm1(ζ), δ(ζ) and h(ζ) for the 

stated values i0, κ21. Then all parameters of a two-

phase flow are got: turbulent stresses, mass flow 

rate, trajectories of the phases in a mixing layer. 

 

 

6 Solutions of Boundary Problems for 

the Initial and Ground Part of Jet 
 

 

6.1 Analytical Solution at the Initial Part 
Solution of the boundary problem (10), (12) allows 

calculating the parameters for the initial part of a jet 

by the stated values i0, κ21. Computational 

experiments revealed the basic features of the flow. 

The velocity distributions for the phases (u1, u2) and 

function-indicators of the phases (B1, B2) are stated, 

as well as the parameters at the cross section.  

The system (10) contains two algebraic and one 

differential equation. From the algebraic equation 

array, the functions y0(h), δ(h) are got. Then the 

differential equation is expressed in a standard form 

dh/dζ=F(h(ζ),i0,κ21), for the numerical solution. The 

equation array (10) can be solved numerically in 

general but the way we applied here is more 

comprehensive for understanding the basic features 

of the system, with as much as possible analytical 

expressions showing the explicit functions. 

The variation range of h(ζ) is determined by 

substitution of the boundary conditions to the 

functions y0(h), δ(h), so that it yields the next: 

0
2

3 0 3 1 3 0 3 1
1 2

2 0 4 4 2 0 4 4

1

1 2 2

y

a i b a a i b a
a a

a i b a a i b a



    
   

    

,           

                  3 0 3 1
0

2 0 4 4

a i b a
y

a i b a


 


 
;                     (18) 

  11 31 0 31
0

32 12 0 32

0
a a i b

h h
a a i b

 
 

 
,            

                   21 41 0 41

42 22 0 42

i i

a a i b
h h

a a i b


 
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 
.           (19) 

The limit values of the 0h  and ih  in (19) are 

computed from the equations 3 0 3 1 0a i b a   , 

2 0 4 4a i b a  =0 corresponding to the beginning 

and the end of the initial part of a jet. Here 

according to the boundary conditions (12), for the 

functions 0 ( )y   and ( )  must be 0 (0) 1y  , 

(0) 0  , and 0 ( ) 0iy   , ( )i i   for any values 

of the parameters including the parameter i0. The 

first one is satisfied by  

3 0 3 1

2 0 4 4

a i b a
A

a i b a

 


 
=0,  

3 0 3 1 0a i b a    , 

where from the first correlation (19) follows. The other 

boundary condition (at the end of initial part) requires 

0 ( ) 0iy   , A  , which yields 2 0 4 4a i b a  =0: 

 2

21 221 2

1
lim

21 2 2
i

A
i

A

a a ha A a A





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 . 

The function y0(h) must be real by any 

parameters, thus, the value under square root in (18) 

must be always positive. Therefore, the following 

requirement is got for the parameters of the 

approximations available for the use here: 
2

1 21 2 2a A a A  >0, which is satisfied by any A 

(A>0) in the ranges 2 0A A  , 1 0A A  , and  
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   2 1 2/ 2aA D a a ,    1 1 2/ 2aA D a a     

where 1aD a , 1 0a  , 2 0a  . Because 

2

1 22aD a a , from 0aD   follows 
2

1 22a a , or 

              

2
1 1

1 1 1 1
0 0

2B u d B u d   
 
 
 

.                 (20) 

In our approximations, the values, a1 and 2a2, are 

very close, therefore  2 1 1 2/ 2A A a a   is critical 

point, where the solution is ill-fated. 

Accounting the (11), the inequality (20) yields 

the following requirement for the function h: 

 2 2 2

12 11 12 22 11 212 2 0a h a a a h a a     , 

satisfying strictly (
2

12a >0), and the equation 

 2 2 2

12 11 12 22 11 212 2 0a h a a a h a a      has no real 

roots 

22 11 12

1,2 2

12

ha a a D
h

a

 
 ,  

because the discriminant  22 22 11 122hD a a a a  <0 

by our approximations as shown below for the data 

presented in the Table 1: 

hD  -1.3  10-4, hD  -2.7  10-5, hD  -7  10-6, 

hD  -2  10-6, hD  -7  10-7. 

The first two values hD  are small and the rest 

are below the accuracy accepted in calculation of 

the data in the Table 1. Therefore, we can put 

0hD   for calculation of the approximate values h 

by all regions of B1, where the solution does not 

exist because 
2

1 21 2 2 0a A a A   , 1,2h h   

  2

22 11 12 12/a a a a . Thus, the approximations of the 

profiles are unattainable; they do not satisfy (20). 

The functions h0(i0), hi(i0) in (19) have the breaks 

at the transition points of the permanent function 

𝐵1
(𝑛)

(𝜂, ℎ) from the one regional approximation to 

the other one (a first derivative has break at those 

points). It is impossible to get a common 

approximation for B1(𝜂, ℎ) satisfying the boundary 

conditions in all range by i0 (due to variation of B1 

between 0 and 1).  

The calculations revealed no substantial 

difference in the final results of numerical solution 

at the transformation points of the functions 

B1(𝜂, ℎ). Some results by estimation of the working 

regions for the function h depending on the 

parameter i0 are presented below in Figs 7-11. 

For the first approximation of the function-

indicator of the first phase, (0)

1B , it is computed the 

initial value of the parameter h, which is h0 =0. The 

corresponding value 
0 15.9i  ; for the end of the 

initial part of the jet it is, correspondingly hi=0, 

0 20.4i  . Therefore, the working region is by h0 and 

hi:  0 1.3;15.9i   and  0 1.8;20.4i  , respectively. 

Thus, common region is  0 1.8;15.9i   - for mixing 

of the liquids when the denser is surrounding one. 

 

Fig. 7 Functions h0 (up) and hi (down) versus 

parameter i0 for the region  6,0h   

Because 
2

0 0i ns , this region fits for nearly all cases 

starting from equal densities of the mixing liquids 

(n=1) because a slip of phases is influencing as 

quadrate 
2

0s  so that even comparably small slip 

0 0.8s   gives respectively 2 1/ 1.8 / 0.64 2.8    , 

2 1/ 15.9 / 0.64 24.8    . Thus,  2 1/ 2;20    

supposed to be approximately, where the last limit 

value of the density ratio may correspond to vapour-

liquid or similar mixing liquids. 

Then similarly calculation for the next 

approximation of the function-indicator, (1)

1B , 

results in h0 =0, 
0 4.07i  , hi=0, 

0 5.2i  . Here the 

working region is  12, 6h    by h0 and hi, 

respectively:  0 0.5;1.25i   and  0 0.84;3.5i  .  

 

Fig. 8 Functions h0 (up) and hi (down) versus 

parameter i0 for the region  12, 6h    
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The common region is  0 0.84;1.25i  , which is 

narrower than the previous one but probably the 

most useful in practice. It might be something like 

 2 1/ 1;1.5   . 

 

Fig. 9 Functions h0 (up) and hi (down) versus 

parameter i0 for the region  20, 12h    

For the third approximation region of the 

function-indicator according to (5), (2)

1B , the 

beginning and the end of the initial part of the jet 

have the following parameters: h0 =0, 
0 0.68i  , 

hi=0, 
0 2.03i  . The working region  20, 12h    

is by h0 and hi, respectively, for:  0 0.16;0.3i   and 

 0 0.35;0.63i  . Thus, the common region by 

parameter 
0i  for the beginning and for the end of the 

initial part of the jet does not exist here, except 

approximately one value 
0 0.3i  , which may be 

considered as the same because 
0 0.3i   and 

0 0.35i   are close and a slip progressing of the 

phases during flow in a mixing zone is available.  

 

Fig. 10 Functions h0 (up) and hi (down) versus 

parameter i0 for the region  30, 20h    

Then for the (3)

1B  follows  30, 20h   ,  h0 =0, 

0 0.77i  , hi=0, 
0 0.93i  - working region is by h0 

and hi:  0 0.14;0.26i   and  0 0.16;0.33i  . The 

common region for the beginning and for the end of 

initial part is  0 0.16;0.26i  , narrow, for a small 

2 1/  . And finally, (4)

1B ,  42, 30h   , h0 =0, 

0 0.42i  , hi=0, 
0 0.49i  . Working region is by h0, 

hi, respectively:  0 0.09;0.15i   and  0 0.1;0.17i  . 

The common region by 
0i  for the beginning and for 

the end of initial part is  0 0.1;0.17i  , very narrow, 

for a very small density ratio 2 1/   (e.g. like a 

spreading of a hot liquid in saturated vapour). 

 

Fig. 11 Functions h0 (up) and hi (down) versus 

parameter i0 for the region  42, 30h    

 

 

6.2 Numerical Simulation of Initial Jet’ Part 
Substitution of hi(i0) into (18) results in correlation 

for the radius of a jet at the end of initial part, δi(i0). 

The (18) determine functions y0(ℎ), δ(ℎ) in the range 

ℎ ∈ [ℎ0,ℎ𝑖], which are monotonous and close to the 

linear ones by i0 over 5, rapidly falling by i0 below 1.  

Differential equation from the system (10) is 

solved numerically with account of the solution 

(18). This equation is written for the part of the 

mixing zone, we use it for the half of mixing layer: 
*

0.5   . Equation array for y0( ), ℎ ( ) is: 

0

3

0 2

1 dydh

d y D d 
   ,    2 *0

0 2 1
dy

y D A
d




   

   

 

*** *

1 1 0 21 2 2

* 2

1 1 0 2 1

/ /

1 2 /
.

B u i B u

u D y D dD dh

      

  


           (21) 

Equation array (21) is solved numerically with the 

initial condition (12), (19), where the expression 

 0 0h h  is the initial condition for (21), while 

(18) and  i ih h   are used for control of the 

numerical solution. Here are the following 

parameters: 
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 
*

2 /u     
*

1 / 1.5u     ,  * *

1 1B B  ,

 2

1 / 12 1u       ,  
2

2 / 12 1u        ,  

*

1 11/16u  , *

2 5/16u  , 3 0 3 1

2 0 4 4

a i b a
A

a i b a

 


 
, 

* * * * * *

1 3 0 3 1 1 0 1 2D A a i b a u i b u    
 

 * * * * * *

4 0 4 2 1 0 2 2A a i b a u i b u    
 ,   

32 0 32 12 22 0 42 42

2 0 4 4 2 0 4 4

a i b a a i b adA
A

dh a i b a a i b a

   
 

   
, 

2

2 22 12 2 12
dA dA

D a A A a a a
dh dh

 
    

 
, 

 * * * * * *1
3 0 3 1 1 0 1 2

dD dA
a i b a u i b u

dh dh
      

 * * * * * *

32 0 32 12 1 0 12 2A a i b a u i b u   
 

 * * * * * *

4 0 4 2 1 0 2 22
dA

A a i b a u i b u
dh

      

 2 * * * * * *

42 0 42 22 1 0 22 2A a i b a u i b u  
. 

 

 

6.3 Numerical Simulation of Ground Part 

From the first two equations (14) for the ground part 

of a jet with the boundary conditions (16) yields 

 

 

2 2

11 21 0 21 1 0 11 20 1

2 2

12 22 0 21 1 0 12 20 1

2

2

m m

m m

u u

u u

i i
h

i i

    

    





  


  
,    

0 22 0 22 12
1 12 20 2 2 2

1 1

2
m

m m

B
Zu Zu

i i

Z

  
 

 


   ,       (22) 

The condition ζ= ∞,  Bm1=0 leads the following: ζ= 

∞, um1δ
2=∞, um1δ=const, so that follows: 

lim
𝜁→∞

∝12

𝑍
(2𝑖0𝛽20 −

1

𝑢𝑚1
2 𝛿2) = 0, 

where from with account of ∝12≠ 0 yields 

lim
𝜁→∞

𝑢𝑚1
2 𝛿2 =

1

2𝑖0𝛽20
≈ {

33, 𝑖0 = 0.3
10, 𝑖0 = 1.0
1.2, 𝑖0 = 8.0

  ,   

ℎ∞ = lim
𝜁→∞

ℎ ≈ {

−70, 𝑖0 = 0.3
−31, 𝑖0 = 1.0
−18, 𝑖0 = 8.0

  .    

The value  ℎ∞ is outside the region of the function ℎ 

variation determined by ℎ = ℎ𝑡 (beginning of the 

ground part). Therefore, function B1 is continuous 

for each value 𝑖0 (its first derivative is piecewise 

continuous). It is changing its approximation with 

transformation of the region by h.  

 

 

7 The conclusions 
Mathematical model obtained allowed studying the 

important features of the turbulent two-phase jets of 

immiscible liquids. The physical phenomena and 

peculiarities of the model were described in detail. 

The model is applicable for detail study of turbulent 

two-phase flows and heat transfer. 

As shown in the paper the limitation of the 

model for turbulent heterogeneous jets of 

immiscible liquids is in touch with polynomial 

approximations of the function-indicator of the 

phases. Despite the proposed simple algorithm for 

control of the transformation of approximations 

from one to another region according to the varying 

parameters, under certain conditions, it is impossible 

to compute the whole jet flow in the frame of one 

approximation for one set of parameters. Also it was 

mentioned about available numerical singularities in 

solution of the boundary problems and shown the 

ways to avoid them. 

The directions of future research are suggested to 

be for improvements of the approximations of the 

profiles and function-indicator based on the results 

of the experimental study of the phase distribution 

in multiphase flows using the special two-phase 

sensors. 
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